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Abstract 
 
A frequency domain non linear Finite Element formulation (FE) is presented herein to 
investigate the effects of arbitrary flow angle on the flutter structural response of isotropic 
curved skin panels under supersonic flow. The first-order shear deformation theory, the 
Marguerre curved plate theory, the von Karman strain-displacement relations, and the quasi-
steady first order piston theory appended with a static aerodynamic load (SAL) are used as the 
backbones of the nonlinear finite element formulation. The triangular Mindlin (MIN3) plate 
element with improved shear correction factor is used in the developed source code. The 
principle of virtual work is applied herein to develop the equations of motion of the fluttering 
simply supported curved panel in structural node degrees of freedom (DOF) and the Newton-
Raphson iteration method is employed to determine the static aerodynamic deflection and the 
dynamic flutter equation. The curved panel stiffness and deflection shape are accurately 
determined under the SAL for a specific range of dynamic pressure and yaw flow angles. In 
this paper the Flutter stability boundaries for different yaw flow angles and specific panel 
height rises are thoroughly investigated using the frequency coalescence analysis. 
 
Introduction 
 
Panel flutter is considered one of the major structural issues for high speed airplanes and 
aerospace vehicles. The surface skin panel under yawed supersonic flow may experience a 
sudden structural fatigue failure resulting in the loss of the vehicle. The determination of the 
flutter stability boundaries under the aforementioned conditions is essential to avoid such 
losses. The present paper focuses on the determination of the critical dynamic pressure of 
curved panels under a yawed supersonic flow. 
 
In the sixties and early seventies researchers have investigated the effect of yawing flows on 
the flutter stability boundaries of isotropic and orthotropic flat rectangular panels at 
supersonic speeds. Several review articles devoted sections to the influence of yaw flow 
angle [1, 2] on panel flutter. Little literature has been dedicated to their effects on curved 
panels. A brief and quick review of yawing flow effects on the flutter of flat isotropic and 
composite plates will be instructive and inspiring for the present work. Kordes and Noll [3], 
and Bohon [4] studied analytically the influence of yawing flow angles on flutter of isotropic 
and composite rectangular panels with simply supported boundary conditions. 



Proceedings of The 2008 IAJC-IJME  International Conference 
ISBN 978-1-60643-379-9 

 
 

 
Fig. 1 Curved panel geometry with dynamic pressure λ and yaw flow angle Λ 

 
Using the Raleigh-Ritz method appended with a 16-term trigonometric beam function, 
Dursasula [5] studied the plate obliquity effect on an isotropic rectangular plate subjected to 
a flow yawing for simply supported and clamped boundary conditions. Kari-Appa et al. [6], 
and Sander et al. [7] used the finite element method to study the effect of flow yawing of 
isotropic parallelogram panels. Shyprykevich and Sawyer [8], and Sawyer [9] have shown 
experimentally and theoretically that critical dynamic pressure is intimately related to the 
nature of the boundary conditions and the yaw flow angle. They demonstrated that 
orthotropic panels mounted on flexible support experienced large reduction in critical 
dynamic pressure for only small changes of flow angles. Additional developments on the 
linear finite element method applied to the aeroelastic stability of plates and shells under 
supersonic flow were reported by Bismarck-Nasr [1]. 
 
An extensive search of the open literature reveals that few investigations on non-linear panel 
flutter have considered the effects of flow yawing. Friedmann and Hanin [10] used first order 
piston theory and PDE/Galerkin method to investigate non-linear flutter under yawed 
supersonic flow. They solved the reduced coupled non-linear ordinary differential modal 
equations with numerical integration using a four by two (4x2) mode model in vacuo, four 
natural modes in the x direction, and two modes in the y direction. They obtained limit cycles 
for simply supported isotropic and orthotropic rectangular panels. Chandiramani et al, [11] 
used third order piston theory in conjunction with PDE/Galerkin method. They solved the 
reduced coupled non-linear ordinary differential modal equations using a predictor and a 
Newton-Raphson type corrector technique for limit-cycle periodic solutions. They employed 
direct numerical integration for non-periodic and chaotic solutions and used a two by two 
(2x2) mode model, two natural modes in the x direction and two natural modes in the y 
direction for simply supported rectangular laminated panels. Recently Abdel-Motagaly et al. 
[12] presented a finite element formulation with an efficient solution procedure for analysis 
of supersonic non-linear flutter of composite panels with arbitrary flow direction. The finite 
element non-linear panel flutter equations were first formulated in the structural-node 
degrees of freedom (DOF). The number of equations was reduced using a modal 
transformation. The minimum number of linear natural modes needed for an accurate and 
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convergent limit cycle flutter response was accurately determined. The reduced non-linear 
modal equations were solved using the linearized update mode with non-linear time function 
(NTF/LUM). Isotropic and composite panels at yawed supersonic flow were treated. They 
showed that yaw flow angle significantly affects the critical dynamic pressure and the limit 
cycle deflection. 
 
The flutter of curved panels under arbitrary yaw flow angle received little attention until 
recently. Pidaparti and Yang [13] were the only team who investigated a linear flutter 
structural analysis of laminated composite plates and shells using finite elements. Their 
aerodynamic load did not account for the SAL. They demonstrated that the critical dynamic 
pressure versus yaw flow angle has a maximum for cylindrical panels with cross-stream 
curvature; whereas for spherical panels the relationship is increasing monotonically. 
Recently, a time domain and a frequency domain non-linear flutter structural analysis of 
curved panels with a formulation considering an arbitrary yaw flow angle was presented by 
the first author [14, 15]. 
 
In the present paper a frequency domain non-linear finite element formulation using the 
extended triangular Mindlin (MIN3) element in conjunction with the first-order shear 
deformation theory, the Marguerre curved plate theory, the von Karman strain-displacement 
relations, and the quasi-steady first order piston theory appended with a static aerodynamic 
load (SAL). The principle of virtual work is then applied to determine the equations of 
motion of the fluttering simply supported curved panel in structural node degrees of freedom 
(DOF) and the Newton-Raphson iteration method is used to determine the static aerodynamic 
deflection and the dynamic flutter equation. The critical dynamic pressure for different flow 
angle configurations is determined by the equation of motion eigen solutions. 
 

 
Fig. 2 Curved panel geometry characterized by the height-rise H/h 

 
Finite Element Formulation: Constitutive Equations 
 
The simply supported curved panel when exposed to flutter experiences large deflections, 
therefore the total strain vector is composed of the inplane linear and nonlinear strain 
components according to the von Karman large deflection theory, the strain due to curvature 
according to Marguerre shallow shell theory, and strain due to bending  
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and the transverse shear strains are 
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The subscripts b, h, and m stand for bending, curvature, and membrane strain components. 
Considering the general case of a composite laminate curved panel, the normal stresses are 
expressed for the kth layer as 
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and the shear stresses for the kth layer are expressed as 
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The constitutive equations for the composite curved panel laminate are 
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The quasi-steady first order piston theory is employed herein for the aerodynamic pressure 
load over the curved skin panel and is expressed according to Ashley and Zartarian [16] as 
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The effect of the flow angle has been added to Eq. (6). The term 22

∞= Vq aa ρ  is the dynamic 

pressure and 12 −= ∞Mβ  is the Prandtl-Glauert factor. The symbol Λ is the arbitrary yaw 
flow angle with respect to x axis, Fig 1, and ho,x and ho,y are the derivatives with respect to x 
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and y of the curved panel geometry ),( yxho . Applying the principle of virtual work and 
proceeding with the assembly process, the system equations of motion in structure-nodes 
DOF after applying the kinematic boundary conditions are 
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where 
[ ] [ ] [ ]yxa AAA ΛλΛλ sincos +=        (8) 

is the total aerodynamic stiffness matrix, 
 
[ ] [ ] [ ] [ ] o

o
s

L KKKK θ++=         (9) 
is the total linear stiffness matrix, 
 
[ ] [ ] [ ] [ ] [ ] [ ] ombo NNN NNNNNN θθθ 111111 ++++=      (10) 
is the total first-order stiffness matrix, 
 
[ ] [ ]θθ22 NN =           (11) 
is the second-order stiffness matrix 
 
and 
 
{ } { } { }

yoxo hhs PPP
,,

sincos ΛλΛλ −−=       (12) 

is the static aerodynamic load. 
 
The matrix [ ]M  represents the system mass matrix, [ ]G  the system aerodynamic damping, 
[ ]xA  the system aerodynamic stiffness matrix with respect to x direction, [ ]yA  the system 

aerodynamic stiffness matrix with respect to y direction, [ ]K  the system linear stiffness 
matrix, [ ]sK  the system linear shear stiffness matrix, [ ] o

oK θ  the system linear stiffness matrix 

due to the shallow shell geometry including a single geometrical matrix [ ]oθ , [ ]θ1N  the 

system non-linear first-order stiffness matrix, [ ] oN θ1  the system non-linear first-order 
stiffness matrix due to shallow shell geometry, [ ] bNN1  the system non-linear first-order 
stiffness matrix due to the nodal vector { }bw , [ ] mNN1  the system non-linear first-order 

stiffness matrix due to the nodal vector { }mw , [ ] oNN θ1  the system non-linear stiffness matrix 

due to the shallow shell geometry and the nodal vectors { }bw  and { }ψw , [ ]θθ2N  the system 

non-linear second-order stiffness matrix, { }
ohP  is the static aerodynamic loads, and { }W  is 
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the system nodal displacement vector. The geometrical curved matrix [ ]oθ  is a function of 
the derivatives of the curved panel geometry ),( yxho  as 
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The parameters λ  and ag  in Equation (7) and (8) refer to the non-dimensional dynamic 
pressure and the aerodynamic damping, respectively, and are 
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The parameter ( ) 2

14
110 haDo ρω =  is a reference frequency, and 110D  is the first entry in 

laminate bending rigidity [ ]D  for a unidirectional zero degree laminate. 
 
According to Gray, [17], the solution of an ordinary differential system of equations with a 
steady state load term can be separated as a time-independent particular solution and a time-
dependent homogenous solution. Therefore the total panel deflection can be separated as 
 
{ } { } { }ts tWWW )(+=          (16) 
 
The homogenous solution characterizes a self-exited dynamic oscillation { }ttW )(  , while the 
particular solution characterizes an aerodynamic static equilibrium deflection { }sW  . 
Substituting Equation (16) into (7), the equation of motion can be separated into two 
distinctive equations as 
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and 
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Equation (18) is a set of non-linear algebraic equations. The equation solution { }sW  is an 
aerostatic deflection under a specific SAL { }sP  at a prescribed dynamic pressureλ . The 
subscripts stts ,,  refer to that the non-linear stiffness matrices [ ]sN1 , [ ]tN1 , [ ]tN 2 , [ ]sN 2 , 
and [ ]stN 2  are evaluated with { }sW  or { }ttW )( , or both simultaneously. 
 
Eigen Problem Formulation 
 
Neglecting the inplane inertia term in Eq. (7), the in-plane displacement vector { }mW  can be 
rewritten as a function of the bending and rotational displacement vector { }bW .  
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The system equations (7) are then expressed in terms of the bending and rotational 
displacement vector as 
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where the aerodynamic stiffness matrices is given by 
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b
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the linear stiffness matrices are given by 
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The non-linear stiffness matrices are given by 
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and 
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the load vector is given by 
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The solution to the eigenvalue problem of Eq. (20), can be assumed as an exponential time 
function 
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Where the non-dimensional eigenvalue κ is defined as 
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The eigen-solution of Eq. (20) has a very specific and unique set of eigen-values and eigen-
vectors fingerprinting exclusively the particular geometry of the curved panel. 
 
Results and Discussion 
 
An aluminum 3-dimensional isotropic cylindrical panel of dimensions a×b×h 
(12.0×12.0×0.04 in., 30.48×30.48 ×0.1016 cm) with simply supported edges along the x 
direction and the y directions is investigated for flutter critical dynamic pressure λ at 
different yaw flow angles Λ, Fig.1. The material density is ρ = 0.00025234 lb×s2/in.4 (2700 
kg/m3), the modulus of elasticity is E = 5×106 psi (7.1×1010 Pa) and the Poisson ratio ν = 0.3. 
Immovable in-plane edges u(0, y) = u(a, y) = v(x, 0) = v(x, b) = 0 are considered herein. The 
cylindrical panel is modeled with 16×16 mesh size representing 512 MIN3 elements, Tessler 
and Hughes [18]. The number of structure DOF is 735 for the curved skin panel system after 
applying the boundary conditions. 
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Fig. 3 Flutter coalescence curve of a 3-D simply supported cylindrical panel with a height-
rise of H/h = 4 and yaw flow angle of Λ=25° 

 
The different curves in Fig. 3 represent the evolution of the frequencies associated with the 
aerostatic modes, [15], function of the dynamic pressure with a particular flow angle. Each 
curve is associated with one aerostatic mode. As an example the lowest curve denominated 
herein curve 1 is associated with the aerostatic mode 1, curve 2 is associated with the 
aerostatic mode 2, and so on. It can be noted from the figure that as the frequencies 
associated with the aerostatic modes evolve with higher dynamic pressure a frequency 
coalescence process is taking place. When the coalescence occurs the curved skin panel 
experience an instability status called flutter. The dynamic pressure at which flutter occurs is 
called critical dynamic pressure. As an example in here the critical dynamic pressure 
corresponding to the coalescence of the frequencies associated with aerostatic modes 1 and 2 
is λcr = 694. It is interesting to notice that a gradual softening of the frequency associated 
with aerostatic mode 1 then a hardening occurs till the coalescence point, whereas the 
frequency associated with aerostatic mode 2 experiences a relative softening toward the 
coalescence point. This softening process may lead to a sudden buckling of the panel, [19]. 
 
The bell curve in Fig. 4 represents the progression of the critical dynamic pressure λcr 
function of the yaw flow angle Λ for a cylindrical curved panel with height rise of H/h = 1.it 
is very important to notice that all dynamic pressure above the bell curve represent a region 
of flutter instability. it is also worthwhile to notice in this particular case that all the 
frequency coalescence corresponding to the critical dynamic pressure called also in the 
literature flutter onset occur between the frequencies corresponding to aerostatic mode 1 and 
aerostatic mode 2 without exception. Herein the height rise of the panel is very small and of 
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the order of the thickness H/h = 1. The curved panel in this case is assimilated to a near plate 
system, in other words behaves dynamically more or less like a flat plate system. It is 
remarkable to notice also from Fig. 4 that the highest critical dynamic pressure occur at a 
yaw flow angle of Λ = 45°. This fact is of prime importance, it tells the aircraft manufacturer 
that there is a preferential panel orientation to maximize the flutter stability boundaries for 
this particular near plate panel. 
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Fig. 4 Flutter critical dynamic pressure function of the yaw flow angle for a 3-D simply 
supported cylindrical panel with a height rise of H/h = 1 

 
By increasing the curved panel height rise to two times the thickness H/h = 2, it is seen from 
Fig. 5 that an increase of the curvature is beneficial to the cylindrical panel for a yaw flow 
angle in the range of 0° ≤ Λ < 75°. For this particular yaw flow angle range all the critical 
dynamic pressure are the results of the frequency coalescence between aerostatic mode 1 and 
aerostatic mode 2. The critical dynamic pressure increase seen in Fig. 5 enhances the panel 
resistance to flutter by bringing the flutter stability boundaries upward. This fact is clearly 
noticeable when comparing the highest critical dynamic pressure for panels with height rise 
H/h =1, λcr = 553, and panels with an increased height rise H/h = 2, λcr = 754. Unfortunately, 
for yaw flow angles between 75° < Λ < 90° the panel experiences a sudden decrease in the 
flutter stability boundaries. Herein, the flutter onset is due to the coalescence of the 
frequencies associated to aerostatic modes 2 and aerostatic mode 3. The coalescence of 
aerostatic mode 2 and aerostatic 3 occurs at a much lower dynamic pressure, λcr = 385. We 
can say in this case that for the range of yaw flow angles 75° < Λ < 90°, the curvature is 
detrimental with respect to the flutter stability boundaries. 
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Fig. 5 Flutter critical dynamic pressure function of the yaw flow angle for a 3-D simply 
supported cylindrical panel with a height rise of H/h = 2 

 
Increasing further the height rise to H/h = 3, Fig 6, it can be noticed that the flutter stability 
boundaries are pushed further upward for a yaw flow angles range of 0° < Λ < 70°. A 
decrease of 5° in the beneficial yaw flow range with respect to the panel yaw flow range with 
a height rise of H/h = 2. Notice that the maximum critical dynamic pressure λcr = 944 occurs 
at Λ = 56° an increase of 25.2 % with respect to the previous panel, H/h = 2. The sudden 
drop in the critical dynamic pressure occurs in the neighborhood of the yaw flow angle of Λ 
= 70°, and the critical dynamic pressure decreases to λcr = 396. Notice that this critical 
dynamic pressure increased slightly with respect to the one corresponding to the panel height 
rise H/h = 2. The increase is only 2.85 %. It is also worthwhile to notice that in the yaw flow 
range of 70° < Λ < 90°, the critical dynamic pressure is essentially due to the coalescence of 
the frequencies corresponding to aerostatic mode 2 and aerostatic mode 3. 
 
Conclusion 
 
From the present study, it can be concluded that for a near plate curved panel of height rise 
of H/h = 1, there is a preferential panel orientation to maximize the critical dynamic pressure. 
For curved panels with a height rise of H/h = 2, and 3, the effect of curvature on the flutter 
stability boundaries is beneficial for a certain low and medium range of yaw flow angles and 
detrimental for a higher yaw flow angles range. 
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Fig. 6 Flutter critical dynamic pressure function of the yaw flow angle for a 3-D simply 
supported cylindrical panel with a height rise of H/h = 3 
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