
Proceedings of The 2008 IAJC - IJME International Conference
ISBN 978-1-60643-379-9

 Paper 065, IT 303

SELLS: A Space Efficient Local Look-up Search Peer-to-Peer Protocol for
Trustworthy Key Distribution

Graciela Perera, Robert Kramer, Anthony Weaver

Youngstown State University
gcperera@cis.ysu.edu, kramer@cis.ysu.edu, aweaver01@student.ysu.edu

Abstract

Unstructured peer-to-peer (P2P) networks for content distribution are decentralized and robust.
Searching for content in the network is based on the Gnutella protocol. The broadcast search
paradigm used by Gnutella is inefficient and generates much traffic overhead from query
messages. The broadcast updates with local look-up search (BULLS) protocol, based on
Gnutella, can reduce traffic overhead at the expense of a space inefficient global data structure.
Improving BULLS can be achieved by the use of a Bloom filter (BF). A BF is a space efficient
probabilistic data structure for membership queries that is widely used in protocols and
applications. That is, they can be used to efficiently determine if a file is stored at a host. The
cost is a small, bounded probability of error called false positive. The false positive rate can be
tuned according to application requirements.

In this paper, we introduce the use of Bloom filters in the design and evaluation of a P2P
protocol that enables a space efficient local look-up search (SELLS). SELLS is enabled by
including Bloom filters in the BULLS protocol. SELLS stores all the shared files in the
network in a data structure called an inverse Bloom filter (IBF). IBF uses a global Bloom filter
(GBF) and a set of local Bloom filters (LBF). The GBF stores the files that are improbable to
be found or downloaded from the network. Additionally, there is one LBF per host in the
network storing the shared files of a given host. Because the Bloom filter summarizes the files
shared at a particular host, SELLS maintains the confidentiality of the files shared, is space
efficient, and reduces traffic overhead by locally searching for files. We also explore the
application of SELLS for trustworthy key distribution.

Introduction

Popular unstructured peer-to-peer (P2P) networks, such as Gnutella, distribute content (files)
in a decentralized manner, are self-organized, and are robust [1]. Additionally, the advent of
wireless and mobile communication has enabled more people to exchange or share files
anywhere, anytime, and on any device. Evidently, for P2P to be widely adopted and
deployed on any device, it is of great importance to design space efficient protocols with
reduced traffic overhead.

Proceedings of The 2008 IAJC - IJME International Conference
ISBN 978-1-60643-379-9

The broadcast search paradigm used by Gnutella is inefficient and generates much traffic
overhead from query messages [3, 4]. Users in a Gnutella file sharing P2P network search for
files by broadcasting queries or flooding the network with queries [9]. Much of the traffic is
overhead from the flooding of query messages and the associated queryhit response
messages from searches for popular files [3, 5]. Many P2P protocols focus on limiting query
flooding and do not allow hosts to know what files are shared by other hosts [2].

Recent P2P file sharing networks, such as FastTrack (i.e., Kazaa), use the concept of
supernodes or ultrapeers to proxy search requests from other hosts called leaves and limit
flooding [2, 4]. Limiting flooding excludes the leaves with low probability of responding to
the queries from file searches. Ultrapeers store the directory of the files shared by each of its
assigned leaves [9]. Although ultrapeers know the files shared by its leaves, they do not
know what files are shared by other ultrapeers. The BULLS protocol, unlike FastTrack, can
allow each ultrapeer to determine the entire set of files shared in the network at the cost of a
space inefficient global data structure [1]. BULLS’ global data structure’s space efficiency
can be improved by representing the files shared by each host with a Bloom filter (BF). A BF
is a space efficient probabilistic data structure for membership queries widely used in
protocols and applications. That is, a BF can be used to efficiently determine if a file is
stored at a host. The cost is a small probability of error called a false positive. The upper
bound of the false positive rate can be tuned according to application requirements [7, 8].

If traffic overhead is reduced and each ultrapeer can efficiently store all the files shared in the
network, then flooding would become suitable for a wide range of applications that have not
been explored by existing P2P networks. In particular, it is of interest to study a novel P2P
application that allows the distribution of secret keys instead of files. A P2P application for
distributing secret keys will allow communication between users to be secure and
independent of a central authority [11].

In this paper, a new design and evaluation of the BULLS protocol is investigated. The new
protocol is called space efficient local look-up search (SELLS). SELLS has all the desirable
properties of BULLS and a space efficient data structure that stores the shared files. SELLS
stores all the shared files in the network in a data structure called inverse Bloom filters (IBF).
IBF uses a global Bloom filter (GBF) and a set of local Bloom filters (LBF). The GBF stores
the files that are improbable to be found or downloaded from the network. Additionally,
there is one LBF per host in the network. Each LBF stores the shared files of a given host.
Because the bloom filter summarizes the files shared of a particular host, SELLS maintains
the confidentiality of the files shared, is space efficient, and reduces traffic overhead by
locally searching for files. Also, a novel application of SELLS for trustworthy key
distribution is discussed.

Protocol Description

Current popular P2P protocols based on Gnutella use the concept of ultrapeers and leaves to
reduce the query/queryhit messages exchanged or overhead traffic [2]. Although, the BULLS

Proceedings of The 2008 IAJC - IJME International Conference
ISBN 978-1-60643-379-9

protocol reduces overhead traffic in most cases when compared to Gnutella, it can be
improved by including in its design the new concept of ultrapeers described in the Gnutella
protocol version 0.6 [1, 9]. The new protocol description of BULLS, which SELLS is based
on, is represented using a finite state machine (FSM).The notation for the FSM diagram used
in this paper shows the states as vertical lines and transitions as horizontal arrows, indicating
the direction of the transition. The transitions are triggered when the input or condition
specified above the arrow is met. The output or actions are specified below the arrow and
occur simultaneously while making the transition. The dotted arrows are the initial and final
transitions in the FSM. The initial transition does not have an originating state, and final
transitions do not have a destination state.

The FSM that describes the new protocol behavior of BULLS is only related to the exchange
of messages (i.e., query, queryhits, and updates) as this is considered to be the overhead
traffic. Low data rate message exchanges from connectivity maintenance (i.e., ping and pong
messages) are not considered in the FSM. File downloads (one per queried file found) are not
considered because not only have these been already studied and improved upon [2], these
are non-overhead traffic that is useful.

BULLS

BULLS is a P2P Gnutella-based protocol that reverses the broadcast search paradigm and
explores broadcasting file updates instead of queries. Figure 1 is the BULLS FSM based on
Gnutella protocol version 0.6. The FSM shown in Figure 1 only describes the behavior of an
ultrapeer host. Ultrapeer hosts, not leaf hosts, exchange overhead messages (i.e., query and
queryhit messages). The behavior of a leaf host in BULLS is the same as in Gnutella; that is,
only generating query message overhead traffic. The queryhit message response from an
ultrapeer to a query message from one of its leaves is omitted from the FSM because it does
not impact the overall overhead queryhit traffic. In addition, the data structure used by
BULLS is only stored by ultrapeer hosts. Each ultrapeer host stores in the data structure its
own share file listing (set of shared files) and the shared file listing of the leaf hosts
connected to it. The four states for the improved version of BULLS with ultrapeers are
defined as in reference [1]. They are Initialize, Idle, Search, and Select. A detailed
description for each of the states and transitions is given below:

• INITIALIZE: An ultrapeer host entering the network can be in this state by
requesting to receive neighbor addresses of ultrapeers (neighbors) or leaves and
downloading the data structure from a specialized bootstrapping host. Upon the reception
of a response with the requested neighbor addresses, the ultrapeer host connects to its
neighbors, forwards its own shared file list (one update message per file shared) and the
share file listing of the leaves (one update message per file shared) to ultrapeer neighbors
(neighbor host that are ultrapeers) only, and transitions to Idle.

Proceedings of The 2008 IAJC - IJME International Conference
ISBN 978-1-60643-379-9

Figure 1. BULLS FSM based on Gnutella version 0.6

Ultrapeer enters network

IDLEINITIALIZE

File search

Local look-up

Receive response

Connect to neighbors,

SEARCH

SELECT
File found

No responses received

File not found

Change in data structure

Send update msg to ultrapeers

Download file

Update data structure

Depart network

Send depart msg

Receive update msg

Update data structure, cache,

Request neighbors,
Download data structure send shared file list,

receive leaves hash table

successful
Local look-up

repeat update msg to ultrapeers

Receive depart msg
Repeat depart msg to ultrapeers

update data structure

Receive query
Repeat query msg to ultrapeers

Figure 1. BULLS FSM based on Gnutella version 0.6

Ultrapeer enters network

IDLEINITIALIZE

File search

Local look-up

Receive response

Connect to neighbors,

SEARCH

SELECT
File found

No responses received

File not found

Change in data structure

Send update msg to ultrapeers

Download file

Update data structure

Depart network

Send depart msg

Receive update msg

Update data structure, cache,

Request neighbors,
Download data structure send shared file list,

receive leaves hash table

successful
Local look-up

repeat update msg to ultrapeers

Receive depart msg
Repeat depart msg to ultrapeers

update data structure

Receive query
Repeat query msg to ultrapeers

Ultrapeer enters network

IDLEINITIALIZE

File search

Local look-up

Receive response

Connect to neighbors,

SEARCH

SELECT
File found

No responses received

File not found

Change in data structure

Send update msg to ultrapeers

Download file

Update data structure

Depart network

Send depart msg

Receive update msg

Update data structure, cache,

Request neighbors,
Download data structure send shared file list,

receive leaves hash table

successful
Local look-up

repeat update msg to ultrapeers

Receive depart msg
Repeat depart msg to ultrapeers

update data structure

Receive query
Repeat query msg to ultrapeers

Proceedings of The 2008 IAJC - IJME International Conference
ISBN 978-1-60643-379-9

• IDLE: In this state, an ultrapeer host can: 1) make a file search by a local look-up in
the data structure and transition to Search; 2) detect a change in the data structure, repeat
to ultrapeer neighbors via an update message the changes in the data structure
(one update per change), and remain in Idle; 3) receive an update message, modify the
data structure with the update received, store it in the cache, repeat it (send an update
message to all ultrapeers neighbors except the one from which the message
was received), and remain in Idle; 4) receive a query message from a leaf host, repeat the
query to all of its ultrapeer neighbors, and remain in Idle; 5) receive a depart message,
update the data structure by modifying the departing host’s row entry, and repeat the
depart message to ultrapeer neighbors; or, 6) disconnect from the network by sending a
depart message.

• SEARCH: In this state, the ultrapeer host waits for results from a local look-up and it
can: 1) transition to Select if the local look-up is successful, or 2) transition to Idle if the
local look-up does not return results.

• SELECT: In this state, a host is selected from which to download a file (the host can
be an ultrapeer or a leaf). The set of possible hosts to select from is returned by the
successful local look-up executed in the Search state. The ultrapeer host downloads the
file, updates its shared files, updates its data structure, and transitions to Idle.

The transitions that impact the amount of overhead traffic generated are the same five
transitions that impact the overhead traffic in reference [1]. The transitions that impact the
amount of overhead traffic cause the broadcast of the shared file list and the broadcast of
updates when the shared file list is modified; that is, when a file is added, deleted, or
downloaded. Also, the data structure used by the improved BULLS protocol remains the
same as described in reference [1].

SELLS

The behavior of the SELLS protocol is similar to the BULLS protocol behavior described in
Figure 1. SELLS differs from BULLS in the data structure used to store the share file listing
(the files shared by each host). SELLS uses a Bloom filter to represent the list of shared files
by each ultrapeer host and can be used to performed file look-ups in the Bloom filter to
obtain the list of IP addresses or hosts from which the desired file can be downloaded.

A Bloom filter is compact, randomized data structured for representing a set, and it supports
membership queries (i.e., whether or not an element belongs to set S). A Bloom filter has the
drawback of allowing a rate of false positives in membership queries [7, 8]; that is, a
membership query incorrectly recognizes a non-element as a member of a set. A Bloom filter
is a set { }nsssS ,...,, 21= of n elements and an m-bit array that uses k independent hash
functions khhh ,...,, 21 , each with range between { }m,...,1 where nm > [7, 8]. Initially, the m-
bit array has all bits set to zero. The ith bit in the m-bit array is set to one if, and only if, there
exists an element e in S and some jth hash function such that ieh j =)(. The m-bit array used

Proceedings of The 2008 IAJC - IJME International Conference
ISBN 978-1-60643-379-9

for the Bloom filters may yield a false positive when determining membership of elements
and can be used to determine when an element does not belong to a set. If an element v is not
in set S, then there is at least one bit in the position in { })(),...,(1 vhvh k of the m-bit array that
is equal to zero. The probability of a false positive fp for an m-bit Bloom filter for a set of n
elements and k independent hash functions is

 kpfp)1(−= where mknep /−≈ [7,8]. (1)

The rate of false positives can be controlled to a given tolerance by setting the parameters k,
n, and m properly. There is a clear tradeoff between the size of the Bloom filter and the rate
of false positives. A good practical estimate for k that can yield a wise and low false positive
rate is

 ()nmk 2ln= [7,8]. (2)

Thus, to design a Bloom filter, we only need to know the number of elements to be
represented and the size of the Bloom filter.

Figure 2. SELLS data structure

Host_name
host_name1 Bloom Filter 1
host_name2

… …

Bloom Filter 2

Local Bloom Filters

host_nameN Bloom FilterN

Set of Bloom Filters
(LBF)

Global Bloom Filters
(GBF)

Bloom Filter
storing probable

unique files

Inverse Bloom Filters (IBF)

Bloom filters allow the data structure used by SELLS to be more space efficient than
BULLS. SELLS uses a compact probabilistic representation or Bloom filter for all the files
shared by each host, instead of representing each file as a separate item. Also, a global
Bloom filter is used to filter searches with low probability of success. The SELLS’ data
structure is called an inverse Bloom filter (IBF). The two components that make the IBF are
a set of local Bloom filters (LBF) and a global Bloom filter (GBF). The IBF used by SELLS
is described in Figure 2 and explained in detail below:

• LBF: The first component shown in Figure 2 is a table with each row representing the
data stored for a host in the network. The columns of the table in Figure 2 are the two

Proceedings of The 2008 IAJC - IJME International Conference
ISBN 978-1-60643-379-9

basic types of data stored. The first column is the hostname, and it is used to identify a
host in the network (IP address or host identification number). The second column is the
Bloom filter representing the file share listing (set of filenames shared) of a host.

• GBF: The second component shown in Figure 2 is a Bloom filter constructed by
applying a generalization of the logical operations (i.e., and, or, and xor). That is, these
operations are applied to the Bloom filters stored in LBF. The operations will create a
Bloom filter that will store the improbable files to be found in the network or the files
that are not stored by any host in the network.

When a SELLS host inserts a file in the file shared list, the corresponding Bloom filter will
be updated by setting the bits obtained from hashing the name of the file inserted. Contrary
to a file being inserted in the file shared list, the deletion of a file causes the Bloom filter to
be reconstructed. That is, each element in the file shared list is inserted in a new Bloom filter
that will substitute the first one.

Additionally, because SELLS stores the shared file list as a single item instead of separate
items, when an ultrapeer host enters the network, it behaves different from BULLS. That is,
it forwards its own shared file list (one update message or one Bloom filter per shared file
list) and the share file listing of the leaves (one update message or one Bloom filter shared
file list) to ultrapeer neighbors (neighbor host that are ultrapeers) only and then transitions, as
BULLS does, to the Idle state.

Flow Model

The flow models developed in this section result in expressions that are statistics for the storage
requirement of the data structure of BULLS (bullsS) and SELLS (sellsS) in bytes. Also,
expressions for the overhead traffic per host in messages per second for Gnutella version 0.6
(gnutellaX), improved BULLS (bullsX), and SELLS (sellsX) are developed. The flow model for
Gnutella version 0.6 (Gnutella) is included as the baseline comparison for the overhead traffic.

BULLS and SELLS are both based on the same FSM shown in Figure 1. The difference in the
overhead traffic between BULLS and SELLS is that BULLS stores a file shared list per host,
while SELLS stores one Bloom filter per host and a single global Bloom filter. All flow models
are developed as a function of the independent variables described in reference [1] and the
independent variables (lbfN) and (gbfN) representing the size (bytes) of the Bloom filters in the
data structure used by SELLS. All assumptions for the flow models not explained in this paper
are assumed to be as in reference [1]. The five assumptions for this work are explained below:

1. The flow model for Gnutella and BULLS described in reference [1] defines the total
number of files shared in the network to be hostsfiles NM , given that each host shares filesM

files [1]. Thus, for the improved BULLS protocol and SELLS, it is assumed that at least
filesM files are shared by each ultrapeer host. Also, it is assumed that hostsN is the total

Proceedings of The 2008 IAJC - IJME International Conference
ISBN 978-1-60643-379-9

number of ultrapeer hosts in the network since ultrapeers are the hosts that generate the
overhead traffic.

2. For simplicity, it is assumed that there are an equal number of leaves connected to each

ultrapeer and that the total number of files shared by all leaves connected to an ultrapeer
is filesM . The total number of files shared by all the leaves in the network is hostsfiles NM ,
as each group of leaf hosts connected to an ultrapeer shares the same number of files as
the ultrapeer itself. This is a reasonable assumption given that the ultapeer capacity must
at least be equal to the aggregated capacity of its leaves. The total number of files in the
network is hostsfiles NM2 .

3. It is also assumed that ultrapeers have a degree D (total number of ultrapeer hosts

connected to an ultrapeer) and that the number of leaves connected to any ultrapeer is
approximately D5 [2, 3, 6, 8].

4. The rate of file searches per host (ultrapeer or leaf), searchR , corresponds to the total file

query search activity initiated by the user at a host (successful and unsuccessful
searches). It is assumed that search activity is the same for a leaf and ultrapeer host.
Search activity depends on the user and not on the host capability.

5. In the improved version of BULLS and SELLS, filesM2 messages are required to

broadcast the entire shared file list of an ultrapeer (filesM files) and the entire shared file
list of all the leaves (filesM files) of the ultrapeer. Additionally, the ultrapeers have the
rate of updates as updatesR , but a leaf update rate is less than that of an ultrapeer. It is a
requirement that ultrapeers have more bandwidth available than leaves [9]. Thus, it is
reasonable to assume that leaves have half or less the rate of updates of an ultrapeer; that
is updatesR5.0 .

Storage Requirements of BULLS and SELLS

In the improved BULLS version described above, each host must store the data structure that
contains all of the names of all files stored in the network by all hosts (ultrapeers and leaves).
The total number of files shared by all the leaves in the network is hostsfiles NM , and the total
number of files shared by all ultrapeers in the network is hostsfiles NM . Thus, the total number
of files shared in the network is hostsfiles NM2 . The size of this data structure (in bytes) for
BULLS with ultrapeers or the improved BULLS is

 ()filenamefileshostnamehostsbulls NMNNS 2+= . (3)
The first term is the number of bytes required to store all the hostnames. The second term is
the total number of bytes necessary to store the filenames of all the files shared by each host.

Proceedings of The 2008 IAJC - IJME International Conference
ISBN 978-1-60643-379-9

For SELLS, the size of this data structure (in bytes) is:

 () gbflbfhostnamehostssells NNNNS ++= . (4)

The first term is the number of bytes required to store the hostnames. The second term is the
total number of bytes used to store the set of filenames shared by each host. Because each set
of filenames shared by a host is represented by a Bloom filter of size lbfN bytes, the total
number of bytes necessary to store all the filenames shared by all hosts in the network is

lbfhosts NN . The third term is the total number of bytes (gbfN) of the Bloom filter (GBF),
representing the improbable files to be found in the network.

Overhead Traffic of Gnutella, BULLS, and SELLS

The overhead message rate for Gnutella, BULLS, and SELLS is based on the overhead
traffic equations described in reference [1]. The overhead message rate per ultrapeer host for
Gnutella is:

 () ()11 −++−= hostshopssearchhostssearchhostssearchgnutella NPNRDNRNDRX . (5)

The first term is the rate of query messages seen by each ultrapeer host and initiated by an
ultrapeer host. Each ultrapeer host receives D copies of each query message sent by every
other ultrapeer host. The second term is the rate of query messages seen by each ultrapeer
host and initiated by a leaf host. Each ultrapeer receives D copies of each query message.
The third term is an approximation of the rate of queryhit response messages seen by each
ultrapeer host. Queryhit messages are returned via the backward path a query message was
received; thus, each queryhit message travels on average hopsN and is received by hostsN
ultrapeer hosts.

The overhead message rate per ultrapeer host for BULLS is

 ()()12/)15.1(5.0 ++−= filesstayhostshostsupdatebulls MTNDNDRX . (6)

The first term is the rate of flooded directory update messages seen by each ultrapeer host as
a result of ultrapeer hosts adding or deleting a shared file. The second term is the rate of
flooded directory update messages seen by each ultrapeer host as a result of leaf hosts adding
or deleting a shared file. When all searches are successful (i.e., a file is found) and files are
not otherwise added or deleted to a host (ultrapeer or leaf), updatesR will be the same as

searchR . The third term is the rate of flooded update messages seen by each ultrapeer host as a
result of hosts entering the network (flooding their entire listing of shared files and share files
list of its leaves to all ultrapeer hosts) and from depart messages from departing ultrapeer
hosts. It is assumed, as in reference [1], that the rate in which hosts enter and depart the
network is the same. For BULLS, the total number of update messages is the same as the

Proceedings of The 2008 IAJC - IJME International Conference
ISBN 978-1-60643-379-9

total number of files shared in the network (filesM2) plus the depart message. Thus, the
overhead message rate per ultrapeer host for SELLS is

 ()()35/)15.1(5.0 ++−= DTNDNDRX stayhostshostsupdatesells . (7)

The first term and second term, as in BULLS, corresponds to the update messages from an
ultrapeer host or leaf adding or deleting a shared file. The third term in SELLS, as in
BULLS, is the rate of flooded updated messages resulting from a host entering or departing
the network. SELLS, in contrast to BULLS, does not flood the network with the entire listing
of shared files and share files list of its leaves. SELLS floods the network with one update
message representing the complete listing of shared files of a host. Thus, the total number of
update messages is the total number of shared file lists by an ultrapeer (15 +D) and one
update message for the GBF. Also, as in BULLS, we must add one additional update
message for the depart message.

Performance Evaluation

The performance evaluation is based on the flow models previously described and the
representative case explained in reference [1]. The numerical values selected for the
overhead traffic variables of Gnutella, BULLS, and SELLS are the same values used
reference [1]. The overhead traffic rate is studied as a function of the rate of hosts entering
(and leaving) the network for the flow models. The variables filesM , P , D , hostsN , searchR ,

and updateR are fixed, and stayT (amount of time a host stays connected to the network) is
varied from a couple of hours to days.

The numerical results in Figure 3 demonstrate the difference between Gnutella, BULLS, and
SELLS overhead traffic as a function of stayT . Figure 3 shows that SELLS has a lower
overhead traffic rate than Gnutella and BULLS. From Figure 3, it can be determined that:

• SELLS reduces Gnutella’s overhead traffic by a minimum of 6 percent and a
maximum of 42 percent.
• SELLS reduces BULLS’ overhead traffic by a minimum of 5 percent and a maximum
of 66 percent.

The numerical values for the storage requirements of BULLS and SELLS are based on the
values in reference [1]. We haves selected values for the size of the Bloom filters that yield
an acceptable false positive rate (i.e., less than 0.1 percent), and we have selected to use four
hash functions. The size in bytes of the bloom filters are:

• lbfN = 512 bytes or 4096 bits (assuming that the average host stores about 100 files)

and the false positive rate is 7.50 x 10-5, which is much less than 0.1 percent.

Proceedings of The 2008 IAJC - IJME International Conference
ISBN 978-1-60643-379-9

• gbfN = 1 Mb or 8,388,608 bits (assuming the total number of files share is less than 8

million files) and the false positive rate is 5.1 x 10-20, which can be considered

negligible.

The numerical results for the representative values used in reference [1] with stayT = 8 hours

and equations 3, 4, 5, 6 , and 7 are:

• gnutellaX = 3908 messages/second

• bullsS = 7.83 x 108 bytes

• bullsX = 5755 messages/second

• sellsS = 0.42 x 108 bytes

• sellsX = 2793 messages/second

The data structure size for BULLS and SELLS corresponds to 747 MB and 40 MB,
respectively. Given that memory stick sizes are usually 1 GB or larger, the SELLS storage
requirement can easily be satisfied at a cost of less than $40. The message rate corresponds
to less than 200 Kb/sec, 350 Kb/sec, and 150 Kb/sec for Gnutella, BULLS, and SELLS,
respectively, which is reasonable for broadband connections with a data rate of several

Figure 3. Impact of Tstay in overhead traffic

0

2000

4000

6000

8000

10000

12000

10 70 130 190 250 310 370 430 490 550 610

m
es

sa
ge

s
/ s

ec
on

d

Tstay x 103 (seconds)

Gnutella BULLS SELLS

Proceedings of The 2008 IAJC - IJME International Conference
ISBN 978-1-60643-379-9

Mb/sec. If 8=stayT hours, then the SELLS overhead traffic rate is 34 percent less than
Gnutella and 39 percent less than BULLS. In addition, SELLS reduces BULLS storage
requirement by 94 percent at the expense of a false positive rate less than 0.1 percent.

Trustworthy Key Distribution Using P2P networks

P2P networks lack security and protocols to establish trust between peers. Establishing
trustworthy key distribution with SELLS requires that each LBF store the trustworthy keys
exchanged by a host in the network and that the GBF stores the improbable trustworthy keys.
Thus, a host will accept a secure trusted connection if the key is found in at least one LBF
and is not found in the GBF. SELLS assumes the existence of a host (Trusty) that has
previously securely exchanged secret keys with other hosts (seed hosts). It is assumed that
seed hosts have previously exchanged secret keys using a public key exchange protocol.
Thus, connecting to the network for the first time has two steps: 1) connect to Trusty and
download the GBF and LBF, and 2) establish a trusted communication with the host using
the LBF from Trusty.

The feasibility of the key exchange between Trusty and other hosts can be achieved using the
Diffie-Hellman protocol or any other public key exchange protocol [10, 11].

Conclusions

SELLS is a new space efficient protocol based on the BULLS protocol. SELLS, like BULLS,
reverses the query broadcast paradigm by building a local data structure and enabling local
look-up search in a host (i.e., without a broadcast query). The SELLS data structure is more
space efficient than the BULLS structure due to the compact representation of the shared file
listing using Bloom filters. Furthermore, today’s information technology (IT) systems require
protocols, like BULLS, that are efficient and can be used to establish trusted
communications. In particular, SELLS can be used in IT systems that communicate over the
Internet and need to exchange secret keys with geographically disperse/remote users. This
allows users to establish a trustworthy communication that will decrease security risks.

The SELLS protocol was designed and evaluated using flow models. Numerical results based
on a representative case show that SELLS needs 94 percent less storage than BULLS and
that SELLS has less overhead traffic when compared to Gnutella and BULLS.

For a representative case, it was shown that SELLS reduces Gnutella’s overhead traffic by a
minimum of 6 percent and a maximum of 42 percent. Also, SELLS reduces BULLS’
overhead traffic by a maximum of 66 percent and a minimum of 5 percent. The SELLS
protocol was also designed with the goal of enabling a novel application for trustworthy key
distribution.

Proceedings of The 2008 IAJC - IJME International Conference
ISBN 978-1-60643-379-9

References

[1] Perera, G., Christensen, K., and Roginsky, A. “Broadcast Updates with Local Look-

up Search (BULLS): A New Peer-to-Peer Protocol,” Proceedings of the ACM
Southeast Conference, (2006), 22(6):124–129.

[2] Androutsellis-Theotokis, S. and Spinellis, D. “A Survey of Peer-To-Peer Content
Distribution Technologies,” ACM Computing Surveys, (December 2004), 36(4):335–
371.

[3] Karagiannis, T., Broido, A., Brownlee, N., Claffy, K., and Faloutsos, M. “Is P2P
Dying or Just Hiding?” Proceedings of GLOBECOM, (December 2004), 1532–1538.

[4] Lv, Q., Cao, P., Cohen, E., Li, K., and Shenker, S. “Search and Replication in
Unstructured Peer-to-Peer Networks,” Proceedings of the 16th International
Conference on Supercomputing, (June 2002), 84–95.

[5] Saroiu, S., Gummadi, P., and Gribble, S. “A Measurement Study of Peer-to-Peer File
Sharing Systems,” Proceedings of SPIE in Multimedia Computing and Networking,
(January 2002), 4673(1):156–170.

[6] Subhabrata, S. and Wang, J. “Analyzing Peer-To-Peer Traffic Across Large
Networks,” IEEE/ACM Transactions on Networking, (April 2004), 12(2):137–150.

[7] Bloom, B. “Space/time Trade-offs in Hash Coding with Allowable Errors,”
Communications of the ACM, (1970), 13(7):422–426.

[8] Mullin, J.K. “A Second Look at Bloom filters,” Communications of the ACM, (1983),
26(8):570–571.

[9] Klingberg, T. and Manfredi, R. “Gnutella Draft Specification v0.6,” (June 2002),
http://rfc-gnutella.sourceforge.net/src/rfc-0_6-draft.html.

[10] Diffie, W. and Hellman, M. “New Directions in Cryptography, IEEE Transactions on
Information Theory,” (1976), 644–654.

[11] Mao, W. Modern Cryptography Theory and Practice. Prentice Hall. (2004).

Biography

GRACIELA PERERA is currently an Assistant Professor in the Computer Science and
Information Systems department at Youngstown State University. She received her Ph.D. in
Computer Science and Engineering from the University of South Florida in August 2007.
She has recently published a book on new search paradigms and power management for
peer-to-peer file sharing, published by VDM Verlag. Her research interest is the design and
performance evaluation of distributed search methods. She is currently focusing on the
applications of peer-to-peer network protocols and security.

ROBERT KRAMER is currently an Associate Professor in the Computer Science and
Information Systems department at Youngstown State University. He is interested in fast
polynomial arithmetic and experimenting with Lego robotics. Dr. Kramer has more than 10
years of teaching experience and was the leader of the grant application from NSF’s STEM
Scholars program that was successfully funded for $600,000.

Proceedings of The 2008 IAJC - IJME International Conference
ISBN 978-1-60643-379-9

ANTHONY WEAVER is currently a student at Youngstown State University, majoring in
computer information systems. His research interests include network performance, security,
and protocol design. Mr. Weaver is currently working on application design for network
traffic analysis.

